[Tetrahedron Letters 51 \(2010\) 4179–4181](http://dx.doi.org/10.1016/j.tetlet.2010.05.148)

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of C15–C27 segment of venturicidine X by utilizing desymmetrization protocol

J. S. Yadav *, Sk. Samad Hossain, Debendra K. Mohapatra

Organic Chemistry Division-I, Indian Institute of Chemical Technology (CSIR), Hyderabad 500 007, India

article info

Article history: Received 28 April 2010 Revised 27 May 2010 Accepted 29 May 2010 Available online 4 June 2010

Keywords: Venturicidines A, B, and X Desymmetrization Barton–McCombie reaction Wittig reaction Sharpless asymmetric epoxidation

ABSTRACT

We have achieved the synthesis of C15–C27 fragment of venturicidine X using desymmetrization protocol, substrate-controlled Grignard reaction, Barton–McCombie reaction, Sharpless epoxidation, and TBSOTf-mediated rearrangement to produce the aldol product through a non-aldol route as the key step following 23 longest linear sequences with 6.4% overall yield starting from a known intermediate 11. - 2010 Elsevier Ltd. All rights reserved.

Venturicidines A, B, and its aglycone venturicidine X, 20-membered macrolide antibiotics, were isolated from several streptomy-ces.^{[1](#page-2-0)} Their structures and absolute configurations (Fig. 1) were elucidated by chemical degradations, spectroscopic correlation, and X-ray crystallographic analysis.^{[2](#page-2-0)} They exhibit strong activity against a number of plant pathogenic fungi and mitochondrial H⁺ATPase.^{[3](#page-2-0)} In 1990, Akita et al. accomplished the first total synthesis and determination of absolute stereochemistry of the aglycone of venturicidines A and B.[4](#page-2-0) Encouraged by the interesting chemical structure combined with remarkable biological activities, we decided to apply our developed desymmetrization protocol and herein we present a highly stereocontrolled synthesis of C15–C27 segment $4b$, 5 of venturicidine X.

Retrosynthetic analysis revealed that venturicidine X can be divided into two major segments C1–C14 (2) and C15–C27 (3), which could be coupled by esterification followed by Wittig–Horner condensation. Fragment 3 would be obtained from the intermediate 4 by Sharpless asymmetric epoxidation followed by TBSOTf-mediated rearrangement to produce the aldol product by a non-aldol route as the key reaction. Intermediate 4 would be obtained from 5 following standard reaction procedure. The intermediate 5 could be obtained from a known bicyclic lactone 6 employing acid-catalyzed methanolysis and substrate-controlled Grignard reaction as key steps. The bicyclic lactone 6 would be obtained by utilizing

Venturicidine A Venturicidine B

Tetrahedro

Figure 1. Structures of venturicidines A, B, and its aglycone venturicidine X.

desymmetrization technique to create six contiguous chiral centers ([Scheme 1](#page-1-0)).

The exo-alkylated lactone 6^6 6^6 was obtained by the following sequence, Zn–Cu couple-mediated $(-10\degree C)$ [4+3] cycloaddition reaction between 2,4-dibromopentan-3-one and furan to form 2,4-dimethyl-8-oxabicyclo-[3.2.1]-oct-6-ene-3-ones $7⁷$ $7⁷$ DIBAL-H reduction 8, benzyl protection 9, asymmetric hydroboration 10, PCC mediated oxidation, Bayer–Villiger reaction,^{[8](#page-2-0)} and alkylation

^{*} Corresponding author. Tel.: +91 40 27193128; fax: +91 40 27160387.

E-mail addresses: yadavpub@iict.res.in (J.S. Yadav), mohapatra@iict.res.in (D.K. Mohapatra).

^{0040-4039/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi[:10.1016/j.tetlet.2010.05.148](http://dx.doi.org/10.1016/j.tetlet.2010.05.148)

Scheme 1. Retrosynthetic analysis of venturicidine X.

6. Acid-catalyzed methanolysis, 9 lithium aluminum hydride (LAH)mediated reduction, and IBX¹⁰-mediated oxidation afforded the aldehyde [11](#page-2-0). $^{\rm 11}$ Substrate-controlled Grignard reaction $^{\rm 12}$ $^{\rm 12}$ $^{\rm 12}$ with ethyl magnesium bromide in THF afforded the desired Felkin-Anh^{[13](#page-2-0)} alcohol 5^{14} 5^{14} 5^{14} (89%) as the major product (93:7 by HPLC) (Fig. 2). The absolute stereochemistry of the newly generated chiral center was confirmed in the later stage of the synthesis.^{[15](#page-2-0)} Acetylation of 5 with acetic anhydride furnished 12 (95%) (Scheme 2).

Compound 12 upon treatment with 60% aqueous acetic acid at 60 °C followed by TEMPO-BAIB-mediated oxidation^{[16](#page-2-0)} afforded 13 (76% over two steps). The axial methyl center was isomerized to equatorial using DBU as the base to obtain 14 and upon treatment with LAH in THF provided triol 15 (80% over two steps). Acetonide protection of 15 followed by catalytic hydrogenation using Pd–C afforded 16^{17} 16^{17} 16^{17} (76% over two steps). The primary hydroxyl group was selectively protected with TBDMSCl and imidazole to afford 17 (90%) and the secondary hydroxyl group was converted to its xanthate derivative 18 (87%) which on subsequent treatment with $Bu₃SnH¹⁸$ in the presence of a catalytic amount of AIBN in refluxing benzene afforded 19 (92%). Desilylation of the primary hydroxyl group using TBAF in THF at room temperature afforded 20 (91%) ([Scheme 3](#page-2-0)).

IBX oxidation of 20 in DMSO and THF furnished aldehyde, which on Wittig homologation with $Ph_3P=C(Me)COOE$ in refluxing benzene afforded α , β -unsaturated ester 4 (77% over two steps) favoring the desired E-isomer. DIBAL-H reduction of the ester afforded the corresponding allylic alcohol. Sharpless asymmetric epoxidation¹⁹ proceeded efficiently to produce epoxide 21 (78% over two steps) which upon treatment with TBSOTf and N,N-diisopropylethylamine furnished a rearranged aldehyde 22 (76%) with good selectivity[.20](#page-2-0) Wittig homologation of aldehyde 22 with $Ph_3P=CHCOOEt$ in refluxing benzene (89%) followed by catalytic hydrogenation with Pd–C afforded 23^{21} 23^{21} 23^{21} (96%) and further lactonization in the presence of PPTS in $CH_2Cl_2/MeOH$ (10:1) furnished **24** (86%). Diastereoselective methylation^{[22](#page-2-0)} of lactone 24 with

Figure 2. Felkin-Anh model for the formation of 5.

LDA in the presence of MeI at -78 °C provided 25 (85%). Reduction of lactone 25 with LAH in THF afforded diol which on selective protection with TBDMSCl and imidazole afforded the desired C15–C27 segment 3 of venturicidine X in 95% yield ([Scheme 4\)](#page-2-0). The spectral and analytical data of 3^{23} 3^{23} 3^{23} were identical with the literature reported values.

In conclusion, we have achieved the synthesis of C15–C27 polyketide back bone of venturicidine X using desymmetrization protocol, substrate-controlled Grignard reaction, Barton– McCombie reaction, Wittig reaction, Sharpless epoxidation, and TBSOTf-mediated rearrangement to produce an aldol product through a non-aldol route as the key step following 23 longest liner sequences with 6.4% overall yield starting from a known intermediate 11.

Scheme 2. Reagents and conditions: (a) Zn–Cu couple, DME, -10 °C, 6 h, 82%; (b) DIBAL-H, CH_2Cl_2 , -10 °C, 1 h, 74% (required product); (c) NaH, BnBr, THF, 50 °C, 94%; (d) (-)-(Ipc)₂BH, THF, -20 °C, 5 days, 92%; (e) (1) PCC, CH₂Cl₂, rt, 3 h, 90%; (2) m-CPBA, NaHCO₃, CH₂Cl₂, rt, 90%; (f) LDA, MeI, THF, -78 °C, 1 h, 94%; (g) (1) LAH, THF, 0 °C to rt, 12 h, 89%; (2) IBX, DMSO, THF, rt, 6 h, 95%; (h) EtMgBr, THF, -78 °C, 1 h, 89%; (i) Ac₂O, Et₃N, CH₂Cl₂, rt, 1 h, 95%.

Scheme 3. Reagents and conditions: (a) 60% AcOH/H₂O, $60\degree$ C, 3 h, 82%; (b) TEMPO, BAIB, CH₂Cl₂, rt, 3 h, 93%; (c) cat. DBU, CH₂Cl₂, 4 h, 90%; (d) LAH, THF, rt, 2 h, 89%; (e) 2,2-DMP, p-TsOH, CH₂Cl₂, rt, 6 h, 85%; (f) H₂, Pd-C (10%), hexane, 12 h, 89%; (g) TBDMSCl, Imid, CH₂Cl₂, 2 h, 0 °C, 90%; (h) NaHMDS, CS₂, MeI, THF, –78 °C, 1 h, 87%; (i) Bu₃SnH, AIBN, PhH, 80 °C, 3 h, 92%; (j) TBAF, THF, rt, 2 h, 91%.

Scheme 4. Reagents and conditions: (a) IBX, DMSO, THF, rt, 2 h, 92%; (b) Ph₃P=C(Me)COOEt, benzene, 80 °C, 3 h_, 84%; (c) DIBAL-H, CH₂Cl₂, –78 °C, 1 h, 93%; (d) ^tBuOOH, Ti(OⁱPr)₄, d-(—)-DET, 4 Å MS, —20 °C, 12 h, 84%; (e) TBSOTf, DIPEA, 4 ÅA 0 MS, –40 C, 76%; (f) Ph3P@CHCOOEt, benzene, 80 C, 4 h, 89%; (g) H2, Pd–C (10%), EtOAc, 3 h, 96%; (h) PPTS, $CH_2Cl_2/MeOH$ (10:1), 0 °C, 5 h, 86%; (i) LDA, MeI, –78 °C, 1 h, 85%; (j) LAH, THF, 0 °C to rt, 1 h, 92%; (k) TBDMSCl, Imid, CH₂Cl₂, 0 °C, 1 h, 95%.

Acknowledgment

S.S.H. thanks Council of Scientific and Industrial research (CSIR), New Delhi, for the financial assistance in the form of research fellowships.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2010.05.148](http://dx.doi.org/10.1016/j.tetlet.2010.05.148).

References and notes

- 1. (a) Rhodes, A.; Fantes, K. H.; Boothroyd, B.; McGonagle, M. P.; Crosse, R. Nature 1961, 192, 952; (b) Laatsch, H.; Kellner, M.; Lee, Y.-S.; Wolf, G. Z. Nature-forsch. 1994, 49b, 977.
- 2. (a) Brufani, M.; Keller-Schierlein, W.; Löffler, W.; Mansperger, I.; Zähner, H. Helv. Chim. Acta 1968, 51, 1293; (b) Brufani, M.; Cerrini, S.; Fedeli, W.; Musu, C.; Cellai, L.; Keller-Schierlein, W. Experientia 1971, 27, 604; (c) Brufani, M.; Cellai, L.; Musu, C.; Keller-Schierlein, W. Helv. Chem. Acta 1972, 55, 2329.
- 3. (a) Linnet, P. E.; Beekey, R. B. Methods Enzymol. 1979, 55, 472; (b) Lardy, H. A. Pharmacol. Ther. 1980, 11, 649.
- 4. (a) Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1990, 31, 1731; (b) Akita, H.; Yamada, H.; Matsukura, H.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1990, 31, 1735.
- 5. (a) Hoffmann, R. W.; Rolle, U. Tetrahedron Lett. 1994, 35, 4751; (b) Tsunashima, K.; Ide, M.; Kadoi, H.; Hirayama, A.; Nakata, M. Tetrahedron Lett. 2001, 42, 3607; (c) Hoffmann, R. W.; Rolle, U.; Göttlich, R. Liebigs Ann. 1996, 1717.
- 6. Rama Rao, A. V.; Yadav, J. S.; Vidyasagar, V. J. Chem. Soc., Chem. Commun. 1985, 55.
-
- 7. Hoffmann, H. M. R. *Angew. Chem., Int. Ed. Engl.* **1984**, 23, 1.
8. Corey, E. J.; Weinshenker, N. M.; Schoff, T. F.; Hubber, W. J. *J. Am. Chem. Soc.*
- 1969, 91, 5675. 9. Yadav, J. S.; Venkatram Reddy, P.; Chandraiah, L. Tetrahedron Lett. 2007, 48, 145.
10. Frigeno, M.: Santagostino, M. Tetrahedron Lett. 1994, 35, 8019.
- Frigeno, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019.
- 11. Yadav, J. S.; Hossain, S. S.; Madhu, M.; Mohapatra, D. K. J. Org. Chem. 2009, 74, 8822.
- 12. Christoffers, J.; Scharl, H.; Frey, W.; Baro, A. Org. Lett. 2004, 6, 1171.
- 13. (a) Anh, N. T. Top. Curr. Chem. 1980, 88, 145; (b) Mulzar, J. Nachr. Chem. Tech. J_{ab} 1984, 32, 16.
- 14. Spectral and analytical data of 5: $[x]_D^{27}$ +37.0 (c 1.4, CHCl₃); IR (neat): v_{max} 3498, 2959, 2933, 2851, 1459, 1354, 1259, 1209, 1183, 1132, 1078, 1043 cm⁻¹; ¹H 2000, 2000, 2001, 1.00, 1.00, 1.200, 1.200, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1 (m, 3H), 3.36 (s, 3H), 2.18 (m, 1H), 2.06 (tdd, J = 12.2, 6.7, 2.6 Hz, 1H), 1.82 (tdd $J = 13.9, 6.9, 1.8$ Hz, 1H), 1.70 (d, $J = 5.6$ Hz, 1H), 1.57–1.36 (m, 2H), 1.05 (d, J = 7.5 Hz, 3H), 1.00 (t, J = 7.3 Hz, 3H), 0.97 (d, J = 7.1 Hz, 3H), 0.77 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.9, 128.2, 127.3, 127.1, 104.8, 75.3, 73.4, 70.9, 69.3, 55.4, 38.2, 36.5, 33.4, 26.9, 13.2, 10.9, 9.3, 7.7; HRMS: m/z calcd for C20H32O4 337.2378; found 337.2368.
- 15. (a) The value 100.61 ppm, 100.04 ppm, 100.15 ppm in 13C NMR for compounds 12, 19, 3 indicate newly generated OH at C25 is anti with respect to C23-OH.; (b) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.
- 16. Hansen, T. M.; Florence, G. J.; Lugo-Mas, P.; Chen, J.; Abrams, J. N.; Forsyth, C. J. Tetrahedron Lett. 2003, 44, 57.
- 17. Spectral and analytical data of **17**: $[x]_0^{27}$ -5.3 (c 1.5, CHCl₃); IR (neat): v_{max} 3522
2933, 2960, 1463, 1380, 1253, 1224, 1154, 1088, 1017 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$ δ 3.74-3.56 (m, 5H), 3.08 (d, J = 2.83 Hz, 1H), 1.88-1.64 (m, 2H), 1.61 (tdd, J = 14.7, 6.7, 2.07 Hz, 1H), 1.50-1.24 (m, 2H), 1.33 (s, 3H), 1.29 (s, 3H), 0.98–0.86 (m, 6H), 0.90 (s, 9H), 0.84 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6.7 Hz
3H), 0.06 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 100.6, 75.0, 74.4, 71.6, 68.1, 38.6 37.3, 35.9, 26.1, 25.4, 23.9, 23.9, 18.5, 12.4, 11.1, 10.7, 9.9, -5.3; ESIMS: m/z $[M+Na]^+$ 412
- 18. Barton, D. H. R.; Hartwig, W.; Motherwell, R. S. H.; Motherwell, W. B.; Stange, A. Tetrahedron Lett. 1982, 23, 2019.
- 19. Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922.
- 20. Jung, M. E.; D'Amico, D. C. J. Am. Chem. Soc. **1993**, 115, 12208.
21. *Spectral and analytical data of* **23**: $[\alpha]_0^{27}$ +21.7 (c 1.7, CHCl₃); IR (neat) v_{max} 2961.
2933, 2883, 1736, 1462, 1377, 1253, 1224,1176, 1 $(300 \text{ MHz}, \text{CDCl}_3)$ δ 4.10 (q, J = 7.2 Hz, 2H), 3.58 (dt, J = 9.3, 5.2 Hz, 1H), 3.30 (dd, $J = 5.2$, 3.1 Hz, 1H), 3.06 (dd, $J = 7.2$, 3.1 Hz, 1H), 2.35–2.18 (m, 2H), 1.76–1.36 $(m, 8H)$, 1.35–1.28 $(m, 1H)$, 1.27 $(s, 6H)$, 1.26 $(t, J = 7.2$ Hz, 3H), 1.06–0.98 (m, J)
- 1H), 0.90 (s, 9H), 0.94–0.79 (m, 15H), 0.06 (s, 3H), 0.04 (s, 3H); 13C NMR (75 MHz, CDCl3) d 173.9, 100.0, 79.9, 79.0, 71.1, 60.2, 36.7, 36.5, 35.6, 34.8, 33.7, 32.7, 30.5, 26.2, 25.3, 23.6, 18.4, 16.1, 14.2, 13.5, 12.5,10.5, 1.0, -3.8; ESIMS: m/z [M+Na]⁺ 523.
- 22. Miyashit, M.; Toshimitsu, Y.; Shiratni, T.; Iri, H. Tetrahedron: Asymmetry 1993, 4, 1573.
- 23. Spectral and analytical data of 3: $\left[\alpha\right]_0^{27}$ +35.0 (c 1.2, CHCl₃); IR (neat) v_{max} 3503, 2925, 2855, 1462, 1378, 1251, 1225, 1177, 1153, 1094, 1016 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.63 (ddd, J = 9.1, 4.8, 4.6 Hz, 1H), 3.44 (dd, J = 9.7, 4.8 Hz, 1H), 3.37 (dd, \vec{J} = 9.7, 6.4 Hz, 1H), 3.16–3.11 (m, 2H), 1.81–1.51 (m, 7H), 1.48–1.33 (m, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.27–1.17 (m, 1H), 1.10 (ddd, $J = 13.4$, 9.5, 4.4 Hz, 1H), 0.90 (s, 9H), 0.94–0.82 (m, 18H), 0.04 (s, 6H); ¹³C NMR $(150 \text{ MHz}, \text{CDCl}_3)$ δ $100.2, 80.0, 79.2, 71.2, 69.0, 37.6, 36.1, 35.0, 33.5, 33.4, 33.1,$ 32.0, 25.9, 25.3, 23.6, 18.3, 16.5, 16.0, 14.7, 12.9, 12.7, 10.5, -5.3; ESIMS: m/z $[M+Na]^+$ 496.